Jeudi 30 août 2018 à 17:44

Energie, nucléaire, économies

Produire l'électricité à partir de l'énergie solaire : aspects économiques.

 (la centrale photovoltaïque française de Toul-Rosières)

 

        Après les aspects techniques de l’énergie photovoltaïque, voyons en les aspects économiques

 L’énergie photovoltaïque dans le monde :

          Le photovoltaïque a produit environ 2,14 % de l'électricité mondiale en 2017.
          Le tableau ci-dessous donne par pays ayant fait effort dans le domaine solaire, d’une part la puissance totale installée fin 2017, et d’autre part la quantité totale annuelle d’énergie produite.

Produire l'électricité à partir de l'énergie solaire : aspects économiques.

           La Chine produit 60% des cellules photovoltaïques dans le monde avec sept des plus grandes entreprises. Deux américains et une firme allemande/Corée se partagent une grande partie du marché restant, un certain nombre d’entreprises ayant fait faillite dans les années 2010, notamment allemandes et américaines.
          Le gouvernement français n’a pas su développer une industrie dans ce domaine.  La firme Evasol a fait faillite en 2012 et la firme Voltec-Solar n’a que de très faibles capacités, comparées aux grands producteurs mondiaux. EDF énergies nouvelles n’est pas un fabricant mais finance la construction d’installations.

 L’énergie photovoltaïque en France :

           Le photovoltaïque s’est développé en France à partir de 2000 grâce à des subventions importantes de l’Etat quant au kw acheté (ou excédentaire racheté) et donc payé par le contribuable, mais aucun effort n’a été fait pour developper la production de cellules et de panneaux.
          Il a fourni 9,2 TWh en 2017, soit 1,7 % de la production électrique.
          En termes de puissance installée, la France se situait en 2017 au 8e rang mondial et au 4e rang européen; mais en termes de puissance installée par habitant, elle se trouve reléguée au 15e rang
          Elle était au 7e rang des producteurs européens d'électricité photovoltaïque en 2017 avec 7,6 % de la production européenne, derrière l'Allemagne, l'Italie, le Royaume-Uni.
          Le « facteur de charge » (production réelle due aux interruptions par rapport à une production théorique) est faible : entre 10 et 15 %.
          Le graphique ci-dessous montre que les 3/4 des installations sont de petites installations individuelles de moins de 3 kW, mais qui ne représentent que 10% de l’énergie. Les centrales de puissance supérieure à 250 kW sont peu nombreuses mais représentent la moitié de l’énergie totale installée.

Produire l'électricité à partir de l'énergie solaire : aspects économiques.

           La liste des centrales photovoltaïques françaises est donnée dans le tableau ci-dessous :

Produire l'électricité à partir de l'énergie solaire : aspects économiques.

            Le développement du solaire individuel  a été encouragé par un système de soutien aux énergies renouvelables sous la forme de l'obligation d'achat de ces énergies par les fournisseurs d'électricité à un tarif réglementé (institué par la loi no 2000-108 du 10 février 2000) ; le surcoût de ce tarif réglementé par rapport au prix de marché est remboursé au fournisseur d'électricité grâce à une taxe sur les factures d'électricité dénommée contribution au service public de l’électricité (donc payée par le consommateur).
            Le coût de ce système ayant été fortement critiqué par les autorités de contrôle financier et l’Europe ayant essayé d’harmoniser les aides, plusieurs modifications de ces tarifs ont eu lieu, à la baisse, mais par contre l’Etat a lancé de nombreux appels d’offres, non seulement pour des installations importantes, mais aussi pour des installations moyennes  sue des bâtiments.
            A titre d’exemple voici les tarifs d’achat consentis en  2014, extrêmement avantageux par rapport au prix du marché (et donc payés par le consommateur). Ils ont baissé actuellement d’environ 10 % (source : Eurostat81):  
                        
- ménages (2500 à 5 000 kWh) : 16,71 c€/kWh TTC 

                        - professionnels (< 20 MWh) : 16,42 c€/kWh TTC;
                        - petits industriels ( 20 à 500 MWh) : 13,63 c€/kWh TTC;
                        prix de gros sur le marché : 4 à 5 c€/kWh (fourchette années 2010-2013).
            Une loi en préparation devrait instituer une prime à l’investissement, mais une réduction du tarif de rachat de l’électricité en surplus à 6 c€ le kWh.
            Compte tenu de ces mesures, le prix de production de l’énergie photovoltaïque serait du même niveau que celui de la fourniture EDF ou autre, de l’ordre de 15c€ compte tenu des multiples taxes, mais le retours d’investissement restent de l’ordre de dix ans..

Les coûts de cette énergie :

             Il faut distinguer le coût des investissements et celui du kWh.
            
L’ADEME, en 2012, donnait les coûts approximatifs suivants des investissements : - 2,2 à 3,5 €/W pour des systèmes de puissance nominale inférieure à 3 kW, mais des frais d’intégration aux structures du bâtiment peuvent augmenter ce coût.

                        - 1,5 à 4 €/W pour un système en toiture inclinée ou terrasse de puissance supérieure à 36 kW ;
                        - 1,8 à 3,2 €/W pour une centrale au sol de puissance supérieure à 1 MW.
 Ces coûts ont baissé du fait de la diminution du prix des panneaux solaires. 

            Le coût du kWh est assez variable, car il dépend du montant de l’investissement, de la durée de l’amortissement (en fonction de la longévité des matériels) et du rendement climatique fonction de l’ensoleillement.
            Wikipédia donne des indications qu’on peut résumer ainsi :
                         - pour une installation domestique, un prix de revient selon la quantité produite (donc de l’ensoleillement) compris entre 13 et 24 c€ le kWh.
                        - pour des centrales anciennes le prix du MWh en France était de l’ordre de  380 €/MWh en 2014
            Mais la baisse des coûts des panneaux solaires entraine une baisse de ces coûts dans des pays ensoleillés : 100 €/MWh et 66 €/MWh dans le sud du pays, en France, 80 €/MWh en Afrique ou en Inde, voire 40 €/MWh au Chili et 48 €/MWh à Dubai. Un projet dans le Emirats Arabes Unis aurait été proposé à 30 €/MWh pour une centrale de 800 MW. On peut se demander si ces deux derniers cas ne sont pas du dumping.

             Bref il est difficile d’évaluer le coût économique du solaire, car les chiffres du marché sont très variables, les conditions des contrats et les lieux d’exploitation étant très différents.
            Par ailleurs ces coûts sont estimés sans celui du raccordement au réseau, ni, dans le cas d’une augmentation sensible de cette filière, celui du complément en centrales à gaz nécessaires du fait de l’intermittence de cette production.
            D'autre part le gain en production de CO2, si on tient compte de la fabrication des éléments et surtout de celui produit par les centrales à gaz complémentaires, et finalement assez faible.

            En définitive, compte tenu du faible rendement des cellules solaires et de la présence intermittente du soleil, qui intervient en milieu de la journée, au moment où l’on a le moins besoin d’électricité, le solaire reste une énergie chère et finalement peu efficace au plan écologique

  Dans un prochain article, j’essaierai de voir ce que l’on trouve en matière de comparaison des diverses filières de production d’électricité, et par ailleurs ce que la Cour des Comptes a écrit sur la politique énergétique française.

Vendredi 24 août 2018 à 17:41

Energie, nucléaire, économies

             J'ai fait il y a plusieurs années des articles sur les diverses sortes d'énergie et la production d'électricité par diverses filières.
             Depuis cette époque il y a eu forcément des progrès techniques et je voudrais revenir sur ces notions, notamment sur les énergies dites "renouvelables" , mot qui ne signifie pas grand chose (l’énergie nucléaire d’un surgénérateur utilisant du Thorium est tout autant renouvelable, les cellules solaires ont une durée de vie limitée et il faut par ailleurs de l’énergie pour fabriquer les panneaux solaires), mais je les appellerai « intermittentes », car il n’y a pas d’énergie s’il n’y a pas de vent ou de soleil.

             Après les éoliennes ou hydroliennes, j’examinerai le solaire, aujourd'hui l'aspect technique et dans huit jours, l'aspect économique.

             Actuellement le solaire consiste essentiellement à utiliser des matériaux qui transforment les photons émis par le soleil en électrons que l’on collecte sous forme d’un courant électrique : c’est l’énergie photovoltaïque.

            Le problème des cellules photovoltaïques est quintuple : leur rendement est très faible, elles produisent un courant continu, de faible voltage (environ 0,5 V), et elles sont relativement chères (et certaines peu fiables). De plus si l’on veut des puissances importantes, cela mobilise des surfaces très importantes et enfin le soleil n’est pas présent de façon homogène, en fonction de l’heure et de la météorologie, et évidemment absent la nuit et l’exposition solaire est difficilement prévisible.

 
Produire l'électricité à partir de l'énergie solaire : aspects techniques.    
Les cellules photovoltaïques peuvent être vues comme un empilement de matériaux :

              la couche active constituée d’un premier matériau accepteur d’électrons et d’un second matériau donneur d’électrons.
              les contacts métalliques avant et arrière,constituant les électrodes positive et négative qui collectent le courant généré ;
              des couches supplémentaires comme un anti-reflet ou une couche plus fortement dopée permettant d’améliorer les performances de la cellule : meilleure absorption de la lumière, meilleure diffusion des porteurs de charges dans le matériau....

             C’est le matériau absorbeur qui diffère selon les cellules.
            Les premières cellules photovoltaïques monocristallines étaient d’un coût prohibitif. Elles ont été replacées par des cellules polycristallines moins chères et d’une durée de vie importante (une trentaine d’années). Leur rendement est de l’ordre de 15 à 20 %
            On voit apparaître des cellules souples, constituées de silicium amorphe sur des supports plastiques (je ferai un article à ce sujet). 
            Mais le rendement, déjà peu élevé, est de l’ordre de 3 à 7%. Le prix, au début assez élevé, baisse considérablement et devrait donc rendre compétitif, à surface égale,  les panneaux constitués de ces modules.
            Des matériaux autres que le silicium sont utilisés : Tellure de Cadmium, , Arséniure de Gallium, Cuivre/indium/sélénium….
            Outre le rendement faible des cellules, il faut tenir compte du rendement d’émission solaire, due à la variabilité de l’atmosphère et à la nuit. (puissance réelle produite/ puissance théorique nominale homogène sur 24h) Les rendements moyens sont de 13% en France, 11% en Allemagne et 21% en Espagne. Ils sont très variable d’un mois sur l’autre et d’une année sur l’autre. De ce fait, 1 GW nucléaire produit en moyenne 7 à 8 TWh/an, contre 1,2 TWh/an pour 1 GW photovoltaïque.

             L’énergie photovoltaÏque est très bien adaptée à l’alimentation de petits appareils électroniques, qui ne demandent qu’une puissance faible et disposent d’un batterie que la cellule photoélectrique recharge. Cela a d’ailleurs été sa première utilisation.

            Elle peut être considérée comme intéressante pour un emploi local dans des maisons individuelles, bien qu’actuellement la limitation en surface de panneaux ne permet pas de disposer de plus de 3kW et que d’autre part elle ne permet pas le chauffage et à l’éclairage, la nuit, sauf batteries importantes de stockage. Elle sert surtout au chauffage de l’eau sanitaire et à l’alimentation de machines utilisées le jour.
            Elle est actuellement d’un coût déjà élevé, bien qu'on n'ait pas besoin de la transporter puisque produite sur place.

             Par contre les centrales solaires photovoltaïque sont à mon avis d’un intérêt limité.
            Pour pouvoir transporter l’énergie sans pertes prohibitives, il faut transformer le courant continu en alternatif au moyen d’onduleurs, puis élever la tension, ce qui rajoute un rendement négatif supplémentaire important, avant l’injection dans le réseau, et un coût prohibitif de raccordement au réseau de distribution. D’autre part la discontinuité de l’ensoleillement rend le stockage nécessaire. C’est donc une énergie très chère. 
            Les surfaces nécessaire sont prohibitives. Si l’on voulait assurer la production mondiale d’électricité il faudrait 100 000 km2, soit la surface de l’Irlande.
            Des centrales flottantes sur la mer sont développées au Japon.

Produire l'électricité à partir de l'énergie solaire : aspects techniques.

             La centrale française EDF près de Nancy, comporte 1,4 millions de panneaux solaires de 120 X 60 cm, avec une puissance théorique de 125 Mw, couvre 367 ha et fonctionne depuis 2012. Les modules sont fabriqués par la firme américaine First Solar et utilisent le tellure de Cadmium. Elle a coûté 430 M€.

             Une autre utilisation possible de l’énergie solaire n’est malheureusement pas très répandue et serait probablement plus rentable au plan de centrales : les installations thermodynamiques.

            Les premières étaient de petites installations mobiles destinées à un emploi particulier. On recevait les rayons solaires sur un miroir parabolique qui concentrait l’énergie sur un récepteur (figure de gauche ci-dessous) ou bien sur des miroirs cylindro-paraboliques qui concentraient l’énergie sur des tuyauteries contenant un fluide à réchauffer (figure de droite ci-dessous). Le but n’était pas forcément de produire de l’électricité mais de chauffer une installation.

Produire l'électricité à partir de l'énergie solaire : aspects techniques.Produire l'électricité à partir de l'énergie solaire : aspects techniques.

 

           De telles installations ont été expérimentées en France à Odeillo, dans les années 80, par des services de l’Etat, mais les pouvoirs publics ne s’y sont jamais intéressé.

            Des installations à l’échelle de centrales peuvent en être déduites selon les deux schémas ci-dessous. Dans la première une multitude de petits miroirs paraboliques placés en cercle autour d’une tour, concentrent l’énergie solaire sur un récepteur dans lequel circule un fluide caloporteur. Dans la seconde les miroirs sont linéaires, ainsi que le récepteur.

Produire l'électricité à partir de l'énergie solaire : aspects techniques.Produire l'électricité à partir de l'énergie solaire : aspects techniques.

 

 

 

 

 

 

 

 

 


             
Le fluide caloporteur peut être de l’eau transformée en vapeur qui alimente ensuite des turbines classiques qui produisent l’électricité. Il peut être aussi constitué de sels fondus qui transforment l’eau en vapeur dans un échangeur. L’avantage des sels fondus est leur température (environ 650 d°), ce qui permet de continuer à produire de la vapeur pendant une certaine durée, alors que l’intensité de l’ensoleillement à disparu.

            Une grande centrale de ce type existe en Espagne, Gemasolar, près de Séville, constituée de 2500 héliostats qui concentrent la chaleur solaire sur un récepteur dans la tour, contenant des sels fondus, ce qui les chauffe à 900 degrés et permet de produire de l'électricité pendant 15 heures sans ensoleillement.Elle produit trois fois plus d'énergie qu'une centrale photovoltaïque de même puissance. D'une puissance de 20 MW, elle produit110 GWh/an, et alimente en électricité 25 000 foyers en Andalousie. Elle a coûté 710 millions d'euros.
Seul inconvénient : elle couvre 187 hectares.

 

Produire l'électricité à partir de l'énergie solaire : aspects techniques. 

 

 

 

 

 

 

 

 

            Dans le prochain article, je parlerai des aspects économiques de l’énergie solaire photoélectrique.

Jeudi 16 août 2018 à 9:43

Energie, nucléaire, économies

      Suite à mon article sur les hydroliennes, on m'a demandé de mettre à jour mon article de 2014 sur les éoliennes aériennes terrestres et maritime, ce que je vais donc essayer de faire.
http://lancien.cowblog.fr/images/bUWTaRWtK1BS1ZWSb1plA8lsri4500x550.png     Ce secteur a peu à peu pris de l’importance en France, soutenu par les commandes et les crédits de l’Etat (c’est à dire l’argent des contribuables). Mais c’est normal de soutenir une nouvelle technique, qui n’est pas rentable au début et qui ne le devient que lorsque les appareillages sont construits en série importante, et que leur coût baisse, ainsi que celui de l’électricité produite;
    Mais ce qui est catastrophique et qui montre l’inconscience des gouvernements successifs, c’est qu’on a peu développé d’industrie des éoliennes en France et que 95% des éoliennes terrestre sont fabriquées à l’étrange, notamment en Allemagne et en Suède. L’industrie française se développe cependant pour les éoliennes en mer.
    Cette aide de l’Etat est d’une part sous forme de commandes, notamment pour les parcs d’éoliennes en mer, et d’autre part parce que l’électricité produite par les parcs éoliens bénéficie d'un tarif d'achat garanti (par EDF, entreprise nationale) très supérieur au prix de marché. Pour l’éolien terrestre, cette garantie est de 82 € par MWh pendant 10 ans, puis entre 28 € et 82 € pendant 5 ans selon les sites. Pour l’éolien offshore, le tarif d'achat est fixé à 130 € par MWh pendant 10 ans, puis entre 30 € et 130 € selon les sites. Ce soutien à la filière éolienne est répercuté sur la facture des consommateurs. (Le coût de l’électricité nucléaire est de l’ordre de 60 € le MWh et la facturation au consommateur, compte tenu des subventions et taxes est compris entre 130 et 150 €/MWh).
    Dans ces conditions, la construction d’éoliennes peut être une bonne affaire financière pour les investisseurs et est malheureusement peu bénéfique au plan industriel.

    Le parc éolien français a fourni, fin 2017, (13 760 Mw) environ 4,5 % de l’électricité du pays, ( soit 24 000 GWh), et la puissance installée mettait la France au 4ème rang européen, (derrière l’Allemagne, le Royaume-Uni et l’Espagne, et au 7ème rang mondial.
    Les projets d’ajout  étaient fin 2017 de 11 500 MW.
    L’installation et l’entretien de ces éoliennes représente environ 16 000 emplois.
    La puissance d’une éolienne selon les modèles va de 1 à 8 Mw.


http://lancien.cowblog.fr/images/ClimatEnergie2/images-copie-2.jpg
    Une éolienne terrestre est constituée des parties suivantes :
    •    un mât cylindrique en acier, d’une hauteur pouvant dépasser 100 mètres. À son pied est implanté le transformateur assurant l’interconnexion de l’électricité produite par l’éolienne avec les réseaux de transport et de distribution ; la mise en place du mat, qui pèse entre 1000 et 3000 tonnes demandeplusieurs mêtre de profondeur d’ancrage en béton..
    •    un rotor dont l’axe entraîne les trois pales d’une hélice en matériau composite pouvant atteindre jusqu’à près de 75 m de rayon). Sa vitesse de rotation est généralement limitée à 30 à 40 tours/min pour minimiser bruits et vibrations, dans une plage de vent comprise entre 10 et 90 km/h ;
    •    une nacelle orientable implantée en haut du mât. Elle contient : les dispositifs mécaniques et électroniques d’orientation et de contrôle du rotor (vitesse et  incidence des pales) ;
    •    la génératrice dynamo transformant en électricité la rotation puissante mais fluctuante et lente du rotor. Cette génératrice est généralement de type classique, tournant à une vitesse constante élevée (1 500 tours/min)et qui doit être couplée au rotor par un multiplicateur mécanique à engrenage.

    L’inconvénient majeur des éoliennes est que le vent n’est pas constant : Les éoliennes fonctionnent environ 80 % du temps mais avec une puissance très variable (puissance réelle située entre 0 et 100 %). En fait le rendement global (puissance fournie/puissance installée) est légèrement variable et, sur un an, légèrement supérieur à 20%.
    L’électricité ne se stocke pas la production instantanée doit toujours répondre à la demande qui varie de façon importante selon les périodes de la journée et selon les saisons. Les pays qui ont une importante production d’électricité éolienne en l’absence de vent mettent en marche des centrales thermiques à charbon ou à gaz qui produisent du CO2. De ce fait l’éolien n’est pas très efficace au plan du changement climatique.

  http://lancien.cowblog.fr/images/ClimatEnergie2/Unknown-copie-3.jpg 
    Le domaine des éoliennes en mer s’est développé depuis 2006 ; en 2012, l’Etat a lancé un appel d’offres pour une centaine d’éoliennes en mer, de 5 à 6 mégawatts, réparties en cinq zones, pour un montant de l’ordre de 10 milliards. Un deuxième appel d’offres a concerné une puissance totale de 1000 MW pour 3,5 milliards. Un troisième appel d’offres en 2016 pour 6 milliards.
    Diverses sociétés françaises (EDF, AREVA…) associées à des sociétés étrangères ont remporté ces commandes, mais une longue discussion de renégociation des prix de l’électricité a eu lieu, car trop élevés par rapport aux autres prix européens.
L’implantation d’éoliennes suscite de nombreuses oppositions : esthétique et bruit à terre, pécheurs en mer, voire problèmes avec les militaires.
    Une partie des litiges ont été réglés et les autorisations de construction accordées, mais aune installation n’est encore faite.
    Diverses études d’éoliennes flottantes ont été lancées et d’installation de « fermes pilotes» en Bretagne et en Méditerranée. (8 éoliennes de 6 Mw et 3 éoliennes de 8 MW.
    L’avantage de l’éolien en mer est la fréquence beaucoup plus importante du vent (presque le double de production par rapport à l’éolien terrestre), mais le coût de l’investissement est beaucoup plus élevé.
    L’avantage des éoliennes flottantes est de pouvoir être construites sur terre et de pouvoir être implantées ensuite à des endroits où la profondeur du fonds ne permet pas l’implantation d’éoliennes fixes.
    L’éolien en mer français reste très cher (200€/MWh) alors qu’aux Pays Bas, le coût est inférieur à 100€/MWh et des coûts inférieurs en Allemagne et si des sociétés françaises sont tributaires des investissements correspondants, la fabrication des matériels reste principalement faite par des étrangers (Allemagne, USA, Suède..)…

http://lancien.cowblog.fr/images/ClimatEnergie2/rf8VTnZo6q6NSsufCr8bYbHNlU500x333.jpg
    En définitive, les gouvernements successifs ont voulu faire un effort en matière d’éolien, ce qui est une bonne chose, mais ont mené une politique catastrophique, s’engageant à garantir des prix très excessifs du MWh produit, ce qui attirait les investisseurs français et étranger, intéressés par une affaire financière très bénéfique, mais ne faisant aucun effort pour développer des études et une production industrielle française des éoliennes et de leurs composants; ce sont donc des sociétés étrangères qui fabriquent les éoliennes françaises.
    Les aides de l’Etat auraient été justifiées si elles avaient développé l’industrie, française génératrice d’emplois, mais elles n’ont servi principalement qu’à enrichir les financiers.

Dimanche 12 août 2018 à 16:35

Energie, nucléaire, économies

     J'avais fait en juin 2014 un article sur les hydroliennes, mais un fait nouveau vient de se produire et cela m'amène donc à examiner à nouveau ce problème

     La production de l’énergie produite par les courants en milieu marin, est suffisamment importante pour être traitée de façon spécifique.
    Comme l'éolien, l'énergie des courants de marée est intermittente avec des variations d'intensité liées au cycle de la marée (le courant est faible quand la mer est étale, soit quatre fois par 24 heures) et de son coefficient. Mais cette force du courant n'est pas dépendante de la météo mais de la lune : on peut donc faire des prévisions des années à l'avance et estimer avec précision la production d’électricité.
    C'est un domaine qui paraît prometteur puisque l'on estimait que, pour s'en tenir aux seules hydroliennes, la puissance installée dans le monde serait de l'ordre de 2-3 gigawatts en 2020 et entre 20 et 30 gigawatts en 2030.
    Pour notre seul pays, le potentiel d'exploitation était estimé à 2,5 gigawatts (c'est le second en Europe, après celui des îles Britanniques), correspondant à un chiffre d'affaires de 2,5 milliards d'euros en 2020 et de 10 milliards d'euros en 2030.
    Le développement de ces technologies était prévu en trois étapes avec des enjeux différents. 
    Le premier enjeu est d'ordre purement technologique, pour faire des démonstrations à l'échelle unitaire. Il est actuellement réalisé dans la firme française DCNS, devenue Naval-Groupen 2017, et ses filiales.
    Le deuxième enjeu est industriel, celui de la ferme pilote, pour faire marcher plusieurs machines ensemble avec un coût de l'énergie pertinent et un développement commercial. 

    Naval-Group voulaitt faire de Cherbourg, où le groupe naval construit des sous-marins, son site de fabrication d'hydroliennes. Situé à quelques encablures du Raz Blanchard, c'est l'un des plus gros gisements mondiaux de courants de marée.
    Il s’agirait, à terme, de produire à Cherbourg 100 hydroliennes par an, (donc une tous les deux jours) une machine de la taille d'un immeuble de 7 étages.
    Cherbourg est un établissement où sont produits depuis plus de cent ans, les sous-marins et il est donc habitué aux études de grosse mécanique, de moteurs et de production de courants électriques.
    Le projet serait de construire un millier d’hydroliennes de 2,5 MW, dans le Raz Blanchard, soit au total 2,5 GW (2,5 Gw est équivalent à 1,5 centrale nucléaire).
    Situé entre La Hague et l'île anglo-normande d'Aurigny (Alderney pour les Anglais), ce passage d'une quinzaine de kilomètres est l'un des sites côtiers français où les courants de marées sont les plus forts, et le "troisième gisement mondial", après la baie de Fundy à l'est du Canada et un site au nord de l'Ecosse. 
    L'autre atout de ce site est sa proximité avec la centrale nucléaire de Flamanville : les hydroliennes pourront en effet être "branchées" sur le réseau électrique de la centrale, moyennant sa "mise à niveau" par EdF pour le rendre capable de recevoir l'énergie supplémentaire.

  La filiale Openhydro achetée par  DCNS a mis au point une turbine sous-marine, à axe horizontal avec génératrice périphérique à aimants permanents, complètement intégrée dans la carène qui supporte l’hélice. La machine est fixée sur un tripode métallique par 30 mètres de fond. L’arrimage au sol est en effet un problème difficile. La hauteur totale est de 21 mètres au dessus du fond et le poids de la machine est d’environ 700 tonnes.
    La turbine fait 16 mètres de diamètre. Son centre ouvert laisse un passage à la faune marine. La turbine est réversible, pour s’adapter au changement de sens du courant.
    La roue, constituée de pales fixes et bi-directionnelles, est en fibre de verre et présente la particularité d'être évidée en son centre, permettant ainsi le passage des poissons et mammifères marins dans un un orifice de 3 mètres de diamètre. Le maintien et le guidage de l'ensemble roue / rotor dans son logement sont assurés par des paliers pour les faibles vitesses puis par la création d'un film d'eau à vitesse nominale.
    Openhydro a déjà réalisé en 2011 une turbine expérimentale pilote pour l’EDF, de 0.5 MW, à Paimpol-Bréhat, qui fonctionne depuis 2011. Deux nouvelles turbines de 16mètres de 2,5 Mw ont été testées, raccordées au réseau, pour pouvoir démontrer la fiabilité à long terme d’une technologie totalement innovante en situation réelle. Cette phase pilote devait permettre le déploiement à partir de 2016 de fermes pré-commerciales et le développement d’une filière industrielle de l’hydrolien en France.

Le scandale ds hydroliennes françaises


     Openhydro a expérimenté depuis 2011une ferme expérimentale au large de Paimpol. Les essais ont été terminés en novembre 2017; (voir photo ci-dessous). La plusgrande difficultérencontrée est un problème de corrosion.

Le scandale ds hydroliennes françaises

    Openhydro a également été sélectionnée par le Ministère de l’Energie de Nouvelle-Ecosse, au Canada, pour la réalisation d’une ferme pilote d’hydroliennes sur le site expérimental du Centre de recherche FORCE (Fundy Ocean Research Centre for Energy).
    Cette expérimentation en Baie de Fundy doit permettre de valider la technologie utilisée afin de lancer la phase industrielle du projet dans le Raz-Blanchard, au large de Cherbourg,  Ce parc prévoit l'immersion à une trentaine de mètres de profondeur de sept hydroliennes de 16 mètres de diamètres. Implanté à 3,5 kilomètres de Goury, ce parc doit occuper une surface de 28 hectares. Estimé à environ 112 millions d'euros, dont environ 50 millions d'euros de subventions, ce parc doit avoir une puissance de 14 MW soit l'équivalent de la consommation électrique annuelle de 10 000 à 13 000 personnes.
     Une première hydrolienne a été immergée en 2016 dans la baie de Lundy. Cette immense turbine de 1 000 tonnes et 16 mètres de diamètres doit produire  2 mégawatts. Elle a été connectée avec succès en 2018 au réseau électrique.
    La réalisation de telles installations est complexe, car à coté des matériels eux mêmes, il faut faire de nombreuses études d’interférence avec le courant pour optimiser le rendement des machines.

     Devant ces résultats positifs, Openhydro a construit la première usine d’assemblage d’hydroliennes au monde qui a été inaugurée jeudi 14 juin 2018 à Cherbourg. Un site de 5500 m² implanté sur un terrain de 5 ha et disposant d’un accès direct aux quais du port,
    Dimensionné pour une production de 25 machines par an, le site peut accueillir en parallèle jusqu’à 8 hydroliennes de 16 mètres de diamètre et de 300 tonnes chacune à différents stades d’assemblage. Il devait procéder à l'assemblage deux hydroliennes commandées par le Japon et le Canada ainsi que les 7 hydroliennes destinées au projet Normandie Hydro, qui prévoit, au profit d'EDF, la réalisation sur le site du Raz Blanchard, zone géographique bénéficie des courants de marées parmi les plus importants au monde, de 7 hydroliennes de 2MW chacune.

   Chose inconcevable, un mois après cette inauguration, la construction des hydroliennes n'est plus financée et Openhydro est mise en liquidation, et l'usine sera utilisée à d'autres fins. Alors que la Commission européenne avait donné son accord pour que la ferme pilote "Normandie Hydro" puisse bénéficier des subventions de l'Etat français, celui-ci ne veut plus accorder de subvention et Naval-Group, ne pouvant supporter seule les coûts correspondants, arrête ces efforts dans ce domaine (c'est en fait une décision de l'Etat, qui détient 60% du capital de Naval-Group).
    Le motif invoqué est que le coût du MWh est trop élevé et que de ce fait les perspectives de construction d'un nombre suffisant d'hydroliennes ne sont pas suffisantes.
    C'est une décision scandaleuse, que dénonce d'ailleurs Hervé Morin, le président de Région. Ce n'est pas parce que le ministère du budget et parce que les technocrates qui ont la main sur le pays aujourd'hui, expliquent que cela coûte trop cher dans un premier temps, qu'on doit renoncer à une filière industrielle qui a un potentiel gigantesque à l'horizon de dix ans.
    En effet les hydroliennes pouvaient peu à peu baisser de coût et de plus petites hydoliennes installées dans le lit de fleuves et rivières, ce qui permettrait de fournir en électricité de nombreuses villes.
    C'est une décision irresponsable de ne pas le soutenir, alors que la France possédait une avance technique certaine et un atout industriel dans ce domaine. Cela ressemble à la décision catastrophique d'avoir arrêté, en juin 1997 le réacteur surgénérateur SuperPhénix, qui a ruiné toute notre avance de dix ans en matière de réacteur de quatrième génération.
   Et cela d'autant plus que le gouvernement a consenti sur les éoliennes terrestres des coûts anormaux du MWh, qui ne profitent qu'à des financiers et des constructeurs étrangers, sans avoir développé d'industrie française dans ce domaine.
  Une formation technique serait nécessaire à l'ENA, qui est le berceau de nos politiques de nos dirigeants, qui ne sont capables que de penser finances à court terme, et de favoriser ceux qui veulent gagner beaucoup d'argent, mais sont incapables de construire un avenir technique industriel en France.
  

 

<< Page précédente | 1 | Page suivante >>

lancien

sortir de la tristesse

Créer un podcast